Proteomics of Chlamydomonas reinhardtii light-harvesting proteins.

نویسندگان

  • Einar J Stauber
  • Andreas Fink
  • Christine Markert
  • Olaf Kruse
  • Udo Johanningmeier
  • Michael Hippler
چکیده

With the recent development of techniques for analyzing transmembrane thylakoid proteins by two-dimensional gel electrophoresis, systematic approaches for proteomic analyses of membrane proteins became feasible. In this study, we established detailed two-dimensional protein maps of Chlamydomonas reinhardtii light-harvesting proteins (Lhca and Lhcb) by extensive tandem mass spectrometric analysis. We predicted eight distinct Lhcb proteins. Although the major Lhcb proteins were highly similar, we identified peptides which were unique for specific lhcbm gene products. Interestingly, lhcbm6 gene products were resolved as multiple spots with different masses and isoelectric points. Gene tagging experiments confirmed the presence of differentially N-terminally processed Lhcbm6 proteins. The mass spectrometric data also revealed differentially N-terminally processed forms of Lhcbm3 and phosphorylation of a threonine residue in the N terminus. The N-terminal processing of Lhcbm3 leads to the removal of the phosphorylation site, indicating a potential novel regulatory mechanism. At least nine different lhca-related gene products were predicted by comparison of the mass spectrometric data against Chlamydomonas expressed sequence tag and genomic databases, demonstrating the extensive variability of the C. reinhardtii Lhca antenna system. Out of these nine, three were identified for the first time at the protein level. This proteomic study demonstrates the complexity of the light-harvesting proteins at the protein level in C. reinhardtii and will be an important basis of future functional studies addressing this diversity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of an Optimized Context for the Expression of GFP as a Reporter Gene in Chlamydomonas Reinhardtii

Background: Chlamydomonas reinhardtii is a novel recombinant eukaryotic expression system with many advantages including fast growth rate, rapid scalability, absence of human pathogens and the ability to fold and assemble complex proteins accurately, however, obstacle relatively low expression level necessitates optimizing foreign gene expression in this system. The Green Fluorescent Protein (G...

متن کامل

Supramolecular organization of photosystem I and light-harvesting complex I in Chlamydomonas reinhardtii.

We report a structural characterization by electron microscopy and image analysis of a supramolecular complex consisting of photosystem I and light-harvesting complex I from the unicellular green alga Chlamydomonas reinhardtii. The complex is a monomer, has longest dimensions of 21.3 and 18.2 nm in projection, and is significantly larger than the corresponding complex in spinach. Comparison wit...

متن کامل

Environmentally modulated phosphoproteome of photosynthetic membranes in the green alga Chlamydomonas reinhardtii.

Mapping of in vivo protein phosphorylation sites in photosynthetic membranes of the green alga Chlamydomonas reinhardtii revealed that the major environmentally dependent changes in phosphorylation are clustered at the interface between the photosystem II (PSII) core and its light-harvesting antennae (LHCII). The photosynthetic membranes that were isolated form the algal cells exposed to four d...

متن کامل

Energy-dissipative supercomplex of photosystem II associated with LHCSR3 in Chlamydomonas reinhardtii.

Plants and green algae have a low pH-inducible mechanism in photosystem II (PSII) that dissipates excess light energy, measured as the nonphotochemical quenching of chlorophyll fluorescence (qE). Recently, nonphotochemical quenching 4 (npq4), a mutant strain of the green alga Chlamydomonas reinhardtii that is qE-deficient and lacks the light-harvesting complex stress-related protein 3 (LHCSR3),...

متن کامل

CP29, a monomeric light-harvesting complex II protein, is essential for state transitions in Chlamydomonas reinhardtii.

In oxygen-evolving photosynthesis, the two photosystems, photosystem I (PSI) and photosystem II (PSII), function in parallel, and their excitation levels must be balanced to maintain an optimal photosynthetic rate under various light conditions. State transitions balance excitation energy between the two photosystems by redistributing light-harvesting complex II (LHCII) proteins. Here we descri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Eukaryotic cell

دوره 2 5  شماره 

صفحات  -

تاریخ انتشار 2003